Pharmacogenetics of Chronic Cardiovascular Drugs: Applications and Implications

Issam Zineh, Pharm.D.
Associate Director, University of Florida Center for Pharmacogenomics
Assistant Professor, University of Florida Colleges of Pharmacy and Medicine

April 11, 2008

Acknowledgments and Disclosures

American Heart Association Florida/Puerto Rico Affiliate
American College of Clinical Pharmacy Frontiers Fund
National Institutes of Health

__

Arca Discovery, Inc
42 North Consulting Group, LLC (www.42ncg.com)
1. Variability in CV drug responses exists
2. Pgx-enhanced treatment decisions
3. Antihypertensive Pgx
4. Statin Pgx
5. Future directions and translation to practice

Variability in Cardiovascular Drug Response

Antihypertensives

<table>
<thead>
<tr>
<th>Systolic Blood Pressure</th>
<th>% of patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLON</td>
<td>62</td>
</tr>
<tr>
<td>HCTZ</td>
<td>60</td>
</tr>
<tr>
<td>DILT</td>
<td>52</td>
</tr>
<tr>
<td>ATEN</td>
<td>51</td>
</tr>
<tr>
<td>PRAZ</td>
<td>43</td>
</tr>
<tr>
<td>CAPT</td>
<td>39</td>
</tr>
<tr>
<td>PLAC</td>
<td>30</td>
</tr>
</tbody>
</table>

Statins

<table>
<thead>
<tr>
<th>Trial</th>
<th>N</th>
<th>Lipid</th>
<th>CARE</th>
<th>HPS</th>
<th>WOS</th>
<th>AFCAPS/TexCAPS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Low Risk</td>
<td>High Risk</td>
<td>Primary</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Secondary</td>
<td>High Risk</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>62%</td>
<td>75%</td>
<td>75%</td>
<td>73%</td>
<td>69%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>75%</td>
<td>75%</td>
<td>73%</td>
<td>69%</td>
<td>69%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
</tbody>
</table>

Warfarin

<table>
<thead>
<tr>
<th>Range</th>
<th>% of patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00-1.49</td>
<td>12.2</td>
</tr>
<tr>
<td>1.50-1.99</td>
<td>26.3</td>
</tr>
<tr>
<td>2.00-3.00</td>
<td>40.8</td>
</tr>
<tr>
<td>3.00-3.49</td>
<td>7.4</td>
</tr>
<tr>
<td>3.50-4.99</td>
<td>5.7</td>
</tr>
<tr>
<td>≥5.00</td>
<td>17.3</td>
</tr>
</tbody>
</table>

Materson et al. 1993 [PMID 11701642]

ADRB1 Variation

Functional Effects in vitro

- **Ser49→Gly**

 Gly allele → lower N-glycosylation and basal activity; greater agonist-mediated downregulation and agonist affinity

- **Arg389→Gly**

 Gly allele → reduced G_s coupling, lower basal and agonist-stimulated adenylyl cyclase activity

Beta-blocker BP Response Variability

- Graph showing systolic blood pressure (% of patients) for different drugs:
 - CLON: 178
 - HCTZ: 188
 - DILT: 185
 - ATEN: 178
 - PRAZ: 188
 - CAPT: 188
 - PLAC: 187

P < 0.001
ADRB1 Polymorphism and Response to Metoprolol

Johnson et al. 2003 [PMID 12844134]

Response to Metoprolol by β_1AR Diploptype

Johnson et al. 2003 [PMID 12844134]
CYP2D6 Polymorphisms and Adverse Events

<table>
<thead>
<tr>
<th>Predictor</th>
<th>Parameter Estimate</th>
<th>Partial R²%</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline daytime DBP</td>
<td>0.79</td>
<td>35.6</td>
<td><0.0001</td>
</tr>
<tr>
<td>Arg389Arg genotype</td>
<td>-8.33</td>
<td>15.8</td>
<td>0.001</td>
</tr>
<tr>
<td>Ser49Ser genotype</td>
<td>-5.05</td>
<td>4.6</td>
<td>0.05</td>
</tr>
</tbody>
</table>

Expected DBP (mm Hg) = 18.82 + 0.79(baseline daytime DBP) – 8.3(if Arg389Arg) – 5.1(if Ser49Ser)

Factors Influencing Response in Multivariate Analysis

<table>
<thead>
<tr>
<th>S-metoprolol AUC quartile</th>
<th>General adverse event rate (%)</th>
<th>Dose-limiting adverse event rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (n = 12) (0.48-3.33)</td>
<td>66.7 (35.4-88.7)</td>
<td>16.7 (2.9-49.1)</td>
</tr>
<tr>
<td>2 (n = 13) (3.53-5.90)</td>
<td>53.8 (26.1-79.6)</td>
<td>23.1 (6.2-54.0)</td>
</tr>
<tr>
<td>3 (n = 13) (6.07-8.72)</td>
<td>23.1 (6.2-54.0)</td>
<td>7.7 (0.4-37.9)</td>
</tr>
<tr>
<td>4 (n = 12) (8.92-23.05)</td>
<td>41.7 (16.5-71.4)</td>
<td>8.3 (0.4-40.2)</td>
</tr>
</tbody>
</table>

CYP2D6 activity score quartile

1 (lowest) (n = 15)	46.7 (22.3-72.6)	13.3 (2.3-41.6)
2 (n = 11)	63.6 (31.6-87.6)	18.2 (3.2-52.2)
3 (n = 11)	36.4 (12.4-68.4)	27.3 (7.3-60.7)
4 (highest) (n = 13)	38.5 (14.1-67.7)	0 (0-28.3)

P value

- 0.09
- 0.35
- 0.45
- 0.47

Zineh et al. 2004 [PMID 15592325]

Johnson et al. 2003 [PMID 12844134]
Pharmacogenomic Evaluation of Antihypertensive Responses (PEAR)

PEAR: Overview of Study Design

Eligibility determination and baseline studies → Randomization

HCTZ 12.5 mg → HCTZ 25 mg → HBP and ABP response assessment + labs → Add atenolol 50 mg → Atenolol 100 mg → Final HBP and APB response assessment + labs

Atenolol 50 mg → Atenolol 100 mg → HBP and ABP response assessment + labs → Add HCTZ 12.5 mg → HCTZ 25 mg → Final HBP and APB response assessment + labs

Study entry

2-6 weeks, depending on treatment at entry

Randomization

approx 6-9 weeks

Response assessment #1

Response assessment #2

Indicates action in patients with BP at goal

Indicates normal progression through study protocol
Outline

1. Variability in CV drug responses exists
2. Pgx-enhanced treatment decisions
3. Antihypertensive Pgx
4. Statin Pgx
5. Future directions and translation to practice
Variability in Statin Responses – Lipids and CRP

Ridker et al. 2005 [PMID 15635109]

Statin Pharmacokinetics and Dynamics

Pharmacokinetics

Pharmacodynamics

www.pharmgkb.org
CXCL5: A Statin Pharmacogenetic Candidate

Constitutive Endothelial ENA-78 Production

<table>
<thead>
<tr>
<th>Treatment</th>
<th>pEPA</th>
<th>pg/mg protein</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ctrl</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>Atorva 1</td>
<td>20</td>
<td>30</td>
</tr>
<tr>
<td>Atorva 5</td>
<td>40</td>
<td>50</td>
</tr>
<tr>
<td>Atorva 10</td>
<td>50</td>
<td>60</td>
</tr>
<tr>
<td>Atorva 50</td>
<td>60</td>
<td>70</td>
</tr>
</tbody>
</table>

INFORM: CXCL5 and 3-yr Mortality Post-ACS

A. Overall Population

- G/G
- G/C
- C/C

P=0.002

B. Caucasians Only

- G/G
- G/C
- C/C

P=0.013

Age=61±12 yrs; White=79%; Women=36%; UA/NSTE/STE=40/31/29%
Statin Benefit Differs by CXCL5 Genotype

![Graph showing 3-yr Mortality Rate by CXCL5 Genotype and Statin Treatment]

- G/G: 158% reduced mortality
- G/C: 125% reduced mortality
- C/C: 39% increased mortality

*P = 0.0009

Atorvastatin Modulates Endothelial CXCL5 During Inflammation

![Graph showing ENA-78 changes with different treatments and time]

- Dose-Dependent
- Time-Dependent

- ENA-78 Relative Changes over Time (hours)
1. Variability in CV drug responses exists
2. Pgx-enhanced treatment decisions
3. Antihypertensive Pgx
4. Statin Pgx
5. Future directions and translation to practice

Prospective Genotype-Stratified CGS

Zineh I. 2007 [PMID 18241612]
Pharmacogenetics of Statin Exposure and Response (POSTER)

Anti-inflammatory Effects

Drug Concentrations

www.pharmgkb.org | Lamba et al. 2002 [PMID 12406645]

WBC Gene Expression in Response to HD-Atorva (1)

CYP3A5 - (*3/*3)

CYP3A5 + (*1/*3)

Gene

CYP3A5 - (*3/*3)

CYP3A5 + (*1/*3)

Gene

Fold change

-15 -10 -5 0 5 10 15

Fold change

-20 -10 0 10 20 30 40 50 60 70
WBC Gene Expression in Response to HD-Atorva (2)

Gene

- APOE
- FN1
- HREG
- HPRT1
- IL1A
- IL5
- LPL
- SELE
- SPP1
- TNC
- VWF

Fold change

CYP3A5 +
CYP3A5 -

Atorva Lactone Concentrations by CYP3A5 Genotype

Skotthen et al. 2008 [PMID 18294823] | Hermann et al. 2006 [PMID 16765141]
Integrative Approach to Pharmacogenetics

- canSNP
- tSNP
- pfSNP
- Linkage
- WGA

Informatics

Putative causal SNP/haplotype

Public curated database

Replication studies

In silico

In vitro

Evidence Base For Translation Into Practice

- Polymorphisms of interest, identified through candidate gene or genome wide association studies
- Clinical associations documented
- Functional basis of genetic associations defined
- Genetic information sufficiently explains response variability to be useful clinically (usually multiple genes)
- Document pharmacogenetic superiority: Pharmacogenetic-guided versus usual care

IWPC

Acknowledgments

Zineh Lab
- Gregory Welder
- Amy DeBella
- Elvin Price
- Julio Duarte

University of Florida
- Amber Beitelshees, PharmD, MPH
- Mike Pacanowski, PharmD
- Nasser Chegini, PhD
- Reginald Frye, PharmD, PhD
- Jonathan Shuster, PhD
- Doug Theriaque, MS

Mid America Heart Institute
- John Spertus, MD

University of Colorado
- Christina Aquilante, PharmD

Physician Collaborators
- Richard Schofield, MD
- Christopher Arant, MD
- Timothy Wessel, MD
- Michael Haller, MD

Our Research Participants